Metamath Proof Explorer


Theorem diveq1d

Description: Equality in terms of unit ratio. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses div1d.1 φ A
divcld.2 φ B
divcld.3 φ B 0
diveq1d.4 φ A B = 1
Assertion diveq1d φ A = B

Proof

Step Hyp Ref Expression
1 div1d.1 φ A
2 divcld.2 φ B
3 divcld.3 φ B 0
4 diveq1d.4 φ A B = 1
5 diveq1 A B B 0 A B = 1 A = B
6 1 2 3 5 syl3anc φ A B = 1 A = B
7 4 6 mpbid φ A = B