Step |
Hyp |
Ref |
Expression |
1 |
|
gcddvds |
|
2 |
1
|
3adant3 |
|
3 |
|
gcdcl |
|
4 |
3
|
nn0zd |
|
5 |
|
simpl |
|
6 |
4 5
|
jca |
|
7 |
6
|
3adant3 |
|
8 |
|
divides |
|
9 |
7 8
|
syl |
|
10 |
|
simpr |
|
11 |
4 10
|
jca |
|
12 |
11
|
3adant3 |
|
13 |
|
divides |
|
14 |
12 13
|
syl |
|
15 |
9 14
|
anbi12d |
|
16 |
|
bezout |
|
17 |
16
|
3adant3 |
|
18 |
|
oveq1 |
|
19 |
|
oveq1 |
|
20 |
18 19
|
oveqan12rd |
|
21 |
20
|
eqeq2d |
|
22 |
21
|
bicomd |
|
23 |
|
simpl |
|
24 |
23
|
zcnd |
|
25 |
24
|
adantl |
|
26 |
3
|
nn0cnd |
|
27 |
26
|
3adant3 |
|
28 |
27
|
ad2antrr |
|
29 |
|
simpl |
|
30 |
29
|
zcnd |
|
31 |
30
|
ad2antlr |
|
32 |
25 28 31
|
mul32d |
|
33 |
|
simpr |
|
34 |
33
|
zcnd |
|
35 |
34
|
adantl |
|
36 |
|
simpr |
|
37 |
36
|
zcnd |
|
38 |
37
|
ad2antlr |
|
39 |
35 28 38
|
mul32d |
|
40 |
32 39
|
oveq12d |
|
41 |
40
|
eqeq2d |
|
42 |
23
|
adantl |
|
43 |
29
|
ad2antlr |
|
44 |
42 43
|
zmulcld |
|
45 |
4
|
3adant3 |
|
46 |
45
|
ad2antrr |
|
47 |
44 46
|
zmulcld |
|
48 |
33
|
adantl |
|
49 |
36
|
ad2antlr |
|
50 |
48 49
|
zmulcld |
|
51 |
3
|
3adant3 |
|
52 |
51
|
ad2antrr |
|
53 |
52
|
nn0zd |
|
54 |
50 53
|
zmulcld |
|
55 |
47 54
|
zaddcld |
|
56 |
55
|
zcnd |
|
57 |
|
gcd2n0cl |
|
58 |
|
nnrp |
|
59 |
58
|
rpcnne0d |
|
60 |
57 59
|
syl |
|
61 |
60
|
ad2antrr |
|
62 |
|
div11 |
|
63 |
28 56 61 62
|
syl3anc |
|
64 |
|
divid |
|
65 |
61 64
|
syl |
|
66 |
47
|
zcnd |
|
67 |
54
|
zcnd |
|
68 |
|
divdir |
|
69 |
66 67 61 68
|
syl3anc |
|
70 |
44
|
zcnd |
|
71 |
51
|
nn0cnd |
|
72 |
71
|
ad2antrr |
|
73 |
57
|
nnne0d |
|
74 |
73
|
ad2antrr |
|
75 |
70 72 74
|
divcan4d |
|
76 |
50
|
zcnd |
|
77 |
76 28 74
|
divcan4d |
|
78 |
75 77
|
oveq12d |
|
79 |
69 78
|
eqtrd |
|
80 |
65 79
|
eqeq12d |
|
81 |
41 63 80
|
3bitr2d |
|
82 |
22 81
|
sylan9bbr |
|
83 |
|
eqcom |
|
84 |
|
simpr |
|
85 |
84
|
anim1ci |
|
86 |
|
bezoutr1 |
|
87 |
85 86
|
syl |
|
88 |
87
|
adantr |
|
89 |
83 88
|
syl5bi |
|
90 |
|
simpll1 |
|
91 |
90
|
zcnd |
|
92 |
|
divmul3 |
|
93 |
91 25 61 92
|
syl3anc |
|
94 |
|
eqcom |
|
95 |
|
eqcom |
|
96 |
93 94 95
|
3bitr4g |
|
97 |
96
|
biimprd |
|
98 |
97
|
a1d |
|
99 |
98
|
imp32 |
|
100 |
|
simp2 |
|
101 |
100
|
zcnd |
|
102 |
101
|
ad2antrr |
|
103 |
|
divmul3 |
|
104 |
102 35 61 103
|
syl3anc |
|
105 |
|
eqcom |
|
106 |
|
eqcom |
|
107 |
104 105 106
|
3bitr4g |
|
108 |
107
|
biimprd |
|
109 |
108
|
a1dd |
|
110 |
109
|
imp32 |
|
111 |
99 110
|
oveq12d |
|
112 |
111
|
eqeq1d |
|
113 |
89 112
|
sylibd |
|
114 |
82 113
|
sylbid |
|
115 |
114
|
exp32 |
|
116 |
115
|
com34 |
|
117 |
116
|
com23 |
|
118 |
117
|
ex |
|
119 |
118
|
com23 |
|
120 |
119
|
rexlimdvva |
|
121 |
17 120
|
mpd |
|
122 |
121
|
impl |
|
123 |
122
|
rexlimdva |
|
124 |
123
|
com23 |
|
125 |
124
|
rexlimdva |
|
126 |
125
|
impd |
|
127 |
15 126
|
sylbid |
|
128 |
2 127
|
mpd |
|