Metamath Proof Explorer


Theorem divgcdnn

Description: A positive integer divided by the gcd of it and another integer is a positive integer. (Contributed by AV, 10-Jul-2021)

Ref Expression
Assertion divgcdnn A B A A gcd B

Proof

Step Hyp Ref Expression
1 nnz A A
2 1 anim1i A B A B
3 gcddvds A B A gcd B A A gcd B B
4 3 simpld A B A gcd B A
5 2 4 syl A B A gcd B A
6 nnne0 A A 0
7 6 neneqd A ¬ A = 0
8 7 adantr A B ¬ A = 0
9 8 intnanrd A B ¬ A = 0 B = 0
10 gcdn0cl A B ¬ A = 0 B = 0 A gcd B
11 2 9 10 syl2anc A B A gcd B
12 nndivdvds A A gcd B A gcd B A A A gcd B
13 11 12 syldan A B A gcd B A A A gcd B
14 5 13 mpbid A B A A gcd B