Metamath Proof Explorer


Theorem divgcdz

Description: An integer divided by the gcd of it and a nonzero integer is an integer. (Contributed by AV, 11-Jul-2021)

Ref Expression
Assertion divgcdz A B B 0 A A gcd B

Proof

Step Hyp Ref Expression
1 gcddvds A B A gcd B A A gcd B B
2 1 3adant3 A B B 0 A gcd B A A gcd B B
3 2 simpld A B B 0 A gcd B A
4 gcd2n0cl A B B 0 A gcd B
5 nnz A gcd B A gcd B
6 nnne0 A gcd B A gcd B 0
7 5 6 jca A gcd B A gcd B A gcd B 0
8 4 7 syl A B B 0 A gcd B A gcd B 0
9 simp1 A B B 0 A
10 df-3an A gcd B A gcd B 0 A A gcd B A gcd B 0 A
11 8 9 10 sylanbrc A B B 0 A gcd B A gcd B 0 A
12 dvdsval2 A gcd B A gcd B 0 A A gcd B A A A gcd B
13 11 12 syl A B B 0 A gcd B A A A gcd B
14 3 13 mpbid A B B 0 A A gcd B