Metamath Proof Explorer


Theorem divge0d

Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpgecld.1 φ A
rpgecld.2 φ B +
divge0d.3 φ 0 A
Assertion divge0d φ 0 A B

Proof

Step Hyp Ref Expression
1 rpgecld.1 φ A
2 rpgecld.2 φ B +
3 divge0d.3 φ 0 A
4 2 rpregt0d φ B 0 < B
5 divge0 A 0 A B 0 < B 0 A B
6 1 3 4 5 syl21anc φ 0 A B