Metamath Proof Explorer


Theorem divge1

Description: The ratio of a number over a smaller positive number is larger than 1. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Assertion divge1 A + B A B 1 B A

Proof

Step Hyp Ref Expression
1 rpgecl A + B A B B +
2 rpcn B + B
3 rpne0 B + B 0
4 2 3 dividd B + B B = 1
5 4 eqcomd B + 1 = B B
6 1 5 syl A + B A B 1 = B B
7 simp3 A + B A B A B
8 simp1 A + B A B A +
9 8 1 1 lediv2d A + B A B A B B B B A
10 7 9 mpbid A + B A B B B B A
11 6 10 eqbrtrd A + B A B 1 B A