Metamath Proof Explorer


Theorem divgt0d

Description: The ratio of two positive numbers is positive. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses ltp1d.1 φ A
divgt0d.2 φ B
divgt0d.3 φ 0 < A
divgt0d.4 φ 0 < B
Assertion divgt0d φ 0 < A B

Proof

Step Hyp Ref Expression
1 ltp1d.1 φ A
2 divgt0d.2 φ B
3 divgt0d.3 φ 0 < A
4 divgt0d.4 φ 0 < B
5 divgt0 A 0 < A B 0 < B 0 < A B
6 1 3 2 4 5 syl22anc φ 0 < A B