Metamath Proof Explorer


Theorem divlt1lt

Description: A real number divided by a positive real number is less than 1 iff the real number is less than the positive real number. (Contributed by AV, 25-May-2020)

Ref Expression
Assertion divlt1lt A B + A B < 1 A < B

Proof

Step Hyp Ref Expression
1 simpl A B + A
2 rpregt0 B + B 0 < B
3 2 adantl A B + B 0 < B
4 1re 1
5 0lt1 0 < 1
6 4 5 pm3.2i 1 0 < 1
7 6 a1i A B + 1 0 < 1
8 ltdiv23 A B 0 < B 1 0 < 1 A B < 1 A 1 < B
9 1 3 7 8 syl3anc A B + A B < 1 A 1 < B
10 recn A A
11 10 div1d A A 1 = A
12 11 adantr A B + A 1 = A
13 12 breq1d A B + A 1 < B A < B
14 9 13 bitrd A B + A B < 1 A < B