Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
divmul13
Next ⟩
divmul24
Metamath Proof Explorer
Ascii
Unicode
Theorem
divmul13
Description:
Swap the denominators in the product of two ratios.
(Contributed by
NM
, 3-May-2005)
Ref
Expression
Assertion
divmul13
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
∧
D
∈
ℂ
∧
D
≠
0
→
A
C
⁢
B
D
=
B
C
⁢
A
D
Proof
Step
Hyp
Ref
Expression
1
mulcom
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
⁢
B
=
B
⁢
A
2
1
adantr
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
∧
D
∈
ℂ
∧
D
≠
0
→
A
⁢
B
=
B
⁢
A
3
2
oveq1d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
∧
D
∈
ℂ
∧
D
≠
0
→
A
⁢
B
C
⁢
D
=
B
⁢
A
C
⁢
D
4
divmuldiv
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
∧
D
∈
ℂ
∧
D
≠
0
→
A
C
⁢
B
D
=
A
⁢
B
C
⁢
D
5
divmuldiv
⊢
B
∈
ℂ
∧
A
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
∧
D
∈
ℂ
∧
D
≠
0
→
B
C
⁢
A
D
=
B
⁢
A
C
⁢
D
6
5
ancom1s
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
∧
D
∈
ℂ
∧
D
≠
0
→
B
C
⁢
A
D
=
B
⁢
A
C
⁢
D
7
3
4
6
3eqtr4d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
∧
D
∈
ℂ
∧
D
≠
0
→
A
C
⁢
B
D
=
B
C
⁢
A
D