Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
divmul13d
Next ⟩
divmul24d
Metamath Proof Explorer
Ascii
Unicode
Theorem
divmul13d
Description:
Swap denominators of two ratios.
(Contributed by
Mario Carneiro
, 27-May-2016)
Ref
Expression
Hypotheses
div1d.1
⊢
φ
→
A
∈
ℂ
divcld.2
⊢
φ
→
B
∈
ℂ
divmuld.3
⊢
φ
→
C
∈
ℂ
divmuldivd.4
⊢
φ
→
D
∈
ℂ
divmuldivd.5
⊢
φ
→
B
≠
0
divmuldivd.6
⊢
φ
→
D
≠
0
Assertion
divmul13d
⊢
φ
→
A
B
⁢
C
D
=
C
B
⁢
A
D
Proof
Step
Hyp
Ref
Expression
1
div1d.1
⊢
φ
→
A
∈
ℂ
2
divcld.2
⊢
φ
→
B
∈
ℂ
3
divmuld.3
⊢
φ
→
C
∈
ℂ
4
divmuldivd.4
⊢
φ
→
D
∈
ℂ
5
divmuldivd.5
⊢
φ
→
B
≠
0
6
divmuldivd.6
⊢
φ
→
D
≠
0
7
2
5
jca
⊢
φ
→
B
∈
ℂ
∧
B
≠
0
8
4
6
jca
⊢
φ
→
D
∈
ℂ
∧
D
≠
0
9
divmul13
⊢
A
∈
ℂ
∧
C
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
∧
D
∈
ℂ
∧
D
≠
0
→
A
B
⁢
C
D
=
C
B
⁢
A
D
10
1
3
7
8
9
syl22anc
⊢
φ
→
A
B
⁢
C
D
=
C
B
⁢
A
D