Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
divmul13i
Next ⟩
divadddivi
Metamath Proof Explorer
Ascii
Unicode
Theorem
divmul13i
Description:
Swap denominators of two ratios.
(Contributed by
NM
, 6-Aug-1999)
Ref
Expression
Hypotheses
divclz.1
⊢
A
∈
ℂ
divclz.2
⊢
B
∈
ℂ
divmulz.3
⊢
C
∈
ℂ
divmuldiv.4
⊢
D
∈
ℂ
divmuldiv.5
⊢
B
≠
0
divmuldiv.6
⊢
D
≠
0
Assertion
divmul13i
⊢
A
B
⁢
C
D
=
C
B
⁢
A
D
Proof
Step
Hyp
Ref
Expression
1
divclz.1
⊢
A
∈
ℂ
2
divclz.2
⊢
B
∈
ℂ
3
divmulz.3
⊢
C
∈
ℂ
4
divmuldiv.4
⊢
D
∈
ℂ
5
divmuldiv.5
⊢
B
≠
0
6
divmuldiv.6
⊢
D
≠
0
7
3
1
mulcomi
⊢
C
⁢
A
=
A
⁢
C
8
7
oveq1i
⊢
C
⁢
A
B
⁢
D
=
A
⁢
C
B
⁢
D
9
3
2
1
4
5
6
divmuldivi
⊢
C
B
⁢
A
D
=
C
⁢
A
B
⁢
D
10
1
2
3
4
5
6
divmuldivi
⊢
A
B
⁢
C
D
=
A
⁢
C
B
⁢
D
11
8
9
10
3eqtr4ri
⊢
A
B
⁢
C
D
=
C
B
⁢
A
D