Metamath Proof Explorer


Theorem divmul13i

Description: Swap denominators of two ratios. (Contributed by NM, 6-Aug-1999)

Ref Expression
Hypotheses divclz.1 A
divclz.2 B
divmulz.3 C
divmuldiv.4 D
divmuldiv.5 B 0
divmuldiv.6 D 0
Assertion divmul13i A B C D = C B A D

Proof

Step Hyp Ref Expression
1 divclz.1 A
2 divclz.2 B
3 divmulz.3 C
4 divmuldiv.4 D
5 divmuldiv.5 B 0
6 divmuldiv.6 D 0
7 3 1 mulcomi C A = A C
8 7 oveq1i C A B D = A C B D
9 3 2 1 4 5 6 divmuldivi C B A D = C A B D
10 1 2 3 4 5 6 divmuldivi A B C D = A C B D
11 8 9 10 3eqtr4ri A B C D = C B A D