Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
divmul24
Next ⟩
divmuleq
Metamath Proof Explorer
Ascii
Unicode
Theorem
divmul24
Description:
Swap the numerators in the product of two ratios.
(Contributed by
NM
, 3-May-2005)
Ref
Expression
Assertion
divmul24
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
∧
D
∈
ℂ
∧
D
≠
0
→
A
C
⁢
B
D
=
A
D
⁢
B
C
Proof
Step
Hyp
Ref
Expression
1
mulcom
⊢
C
∈
ℂ
∧
D
∈
ℂ
→
C
⁢
D
=
D
⁢
C
2
1
ad2ant2r
⊢
C
∈
ℂ
∧
C
≠
0
∧
D
∈
ℂ
∧
D
≠
0
→
C
⁢
D
=
D
⁢
C
3
2
adantl
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
∧
D
∈
ℂ
∧
D
≠
0
→
C
⁢
D
=
D
⁢
C
4
3
oveq2d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
∧
D
∈
ℂ
∧
D
≠
0
→
A
⁢
B
C
⁢
D
=
A
⁢
B
D
⁢
C
5
divmuldiv
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
∧
D
∈
ℂ
∧
D
≠
0
→
A
C
⁢
B
D
=
A
⁢
B
C
⁢
D
6
divmuldiv
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
D
∈
ℂ
∧
D
≠
0
∧
C
∈
ℂ
∧
C
≠
0
→
A
D
⁢
B
C
=
A
⁢
B
D
⁢
C
7
6
ancom2s
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
∧
D
∈
ℂ
∧
D
≠
0
→
A
D
⁢
B
C
=
A
⁢
B
D
⁢
C
8
4
5
7
3eqtr4d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
C
≠
0
∧
D
∈
ℂ
∧
D
≠
0
→
A
C
⁢
B
D
=
A
D
⁢
B
C