Metamath Proof Explorer


Theorem divmulass

Description: An associative law for division and multiplication. (Contributed by AV, 10-Jul-2021)

Ref Expression
Assertion divmulass A B C D D 0 A B D C = A B C D

Proof

Step Hyp Ref Expression
1 simpl1 A B C D D 0 A
2 simpl2 A B C D D 0 B
3 simpr A B C D D 0 D D 0
4 divass A B D D 0 A B D = A B D
5 1 2 3 4 syl3anc A B C D D 0 A B D = A B D
6 5 eqcomd A B C D D 0 A B D = A B D
7 6 oveq1d A B C D D 0 A B D C = A B D C
8 mulcl A B A B
9 8 3adant3 A B C A B
10 9 adantr A B C D D 0 A B
11 simpl3 A B C D D 0 C
12 div32 A B D D 0 C A B D C = A B C D
13 10 3 11 12 syl3anc A B C D D 0 A B D C = A B C D
14 7 13 eqtrd A B C D D 0 A B D C = A B C D