Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
divmulass
Next ⟩
divmulasscom
Metamath Proof Explorer
Ascii
Unicode
Theorem
divmulass
Description:
An associative law for division and multiplication.
(Contributed by
AV
, 10-Jul-2021)
Ref
Expression
Assertion
divmulass
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
∧
D
≠
0
→
A
⁢
B
D
⁢
C
=
A
⁢
B
⁢
C
D
Proof
Step
Hyp
Ref
Expression
1
simpl1
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
∧
D
≠
0
→
A
∈
ℂ
2
simpl2
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
∧
D
≠
0
→
B
∈
ℂ
3
simpr
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
∧
D
≠
0
→
D
∈
ℂ
∧
D
≠
0
4
divass
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
D
∈
ℂ
∧
D
≠
0
→
A
⁢
B
D
=
A
⁢
B
D
5
1
2
3
4
syl3anc
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
∧
D
≠
0
→
A
⁢
B
D
=
A
⁢
B
D
6
5
eqcomd
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
∧
D
≠
0
→
A
⁢
B
D
=
A
⁢
B
D
7
6
oveq1d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
∧
D
≠
0
→
A
⁢
B
D
⁢
C
=
A
⁢
B
D
⁢
C
8
mulcl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
⁢
B
∈
ℂ
9
8
3adant3
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
⁢
B
∈
ℂ
10
9
adantr
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
∧
D
≠
0
→
A
⁢
B
∈
ℂ
11
simpl3
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
∧
D
≠
0
→
C
∈
ℂ
12
div32
⊢
A
⁢
B
∈
ℂ
∧
D
∈
ℂ
∧
D
≠
0
∧
C
∈
ℂ
→
A
⁢
B
D
⁢
C
=
A
⁢
B
⁢
C
D
13
10
3
11
12
syl3anc
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
∧
D
≠
0
→
A
⁢
B
D
⁢
C
=
A
⁢
B
⁢
C
D
14
7
13
eqtrd
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
∧
D
∈
ℂ
∧
D
≠
0
→
A
⁢
B
D
⁢
C
=
A
⁢
B
⁢
C
D