Metamath Proof Explorer


Theorem divmulasscom

Description: An associative/commutative law for division and multiplication. (Contributed by AV, 10-Jul-2021)

Ref Expression
Assertion divmulasscom A B C D D 0 A B D C = B A C D

Proof

Step Hyp Ref Expression
1 divmulass A B C D D 0 A B D C = A B C D
2 mulcom A B A B = B A
3 2 3adant3 A B C A B = B A
4 3 adantr A B C D D 0 A B = B A
5 4 oveq1d A B C D D 0 A B C D = B A C D
6 simpl2 A B C D D 0 B
7 simpl1 A B C D D 0 A
8 simp3 A B C C
9 8 anim1i A B C D D 0 C D D 0
10 3anass C D D 0 C D D 0
11 9 10 sylibr A B C D D 0 C D D 0
12 divcl C D D 0 C D
13 11 12 syl A B C D D 0 C D
14 6 7 13 mulassd A B C D D 0 B A C D = B A C D
15 8 adantr A B C D D 0 C
16 simpr A B C D D 0 D D 0
17 divass A C D D 0 A C D = A C D
18 7 15 16 17 syl3anc A B C D D 0 A C D = A C D
19 18 eqcomd A B C D D 0 A C D = A C D
20 19 oveq2d A B C D D 0 B A C D = B A C D
21 14 20 eqtrd A B C D D 0 B A C D = B A C D
22 1 5 21 3eqtrd A B C D D 0 A B D C = B A C D