Metamath Proof Explorer


Theorem divmuld

Description: Relationship between division and multiplication. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses div1d.1 φ A
divcld.2 φ B
divmuld.3 φ C
divmuld.4 φ B 0
Assertion divmuld φ A B = C B C = A

Proof

Step Hyp Ref Expression
1 div1d.1 φ A
2 divcld.2 φ B
3 divmuld.3 φ C
4 divmuld.4 φ B 0
5 divmul A C B B 0 A B = C B C = A
6 1 3 2 4 5 syl112anc φ A B = C B C = A