Metamath Proof Explorer


Theorem divmuleq

Description: Cross-multiply in an equality of ratios. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion divmuleq A B C C 0 D D 0 A C = B D A D = B C

Proof

Step Hyp Ref Expression
1 divcl A C C 0 A C
2 1 3expb A C C 0 A C
3 2 ad2ant2r A B C C 0 D D 0 A C
4 divcl B D D 0 B D
5 4 3expb B D D 0 B D
6 5 ad2ant2l A B C C 0 D D 0 B D
7 mulcl C D C D
8 7 ad2ant2r C C 0 D D 0 C D
9 mulne0 C C 0 D D 0 C D 0
10 8 9 jca C C 0 D D 0 C D C D 0
11 10 adantl A B C C 0 D D 0 C D C D 0
12 mulcan2 A C B D C D C D 0 A C C D = B D C D A C = B D
13 3 6 11 12 syl3anc A B C C 0 D D 0 A C C D = B D C D A C = B D
14 simprll A B C C 0 D D 0 C
15 simprrl A B C C 0 D D 0 D
16 3 14 15 mulassd A B C C 0 D D 0 A C C D = A C C D
17 divcan1 A C C 0 A C C = A
18 17 3expb A C C 0 A C C = A
19 18 ad2ant2r A B C C 0 D D 0 A C C = A
20 19 oveq1d A B C C 0 D D 0 A C C D = A D
21 16 20 eqtr3d A B C C 0 D D 0 A C C D = A D
22 14 15 mulcomd A B C C 0 D D 0 C D = D C
23 22 oveq2d A B C C 0 D D 0 B D C D = B D D C
24 6 15 14 mulassd A B C C 0 D D 0 B D D C = B D D C
25 divcan1 B D D 0 B D D = B
26 25 3expb B D D 0 B D D = B
27 26 ad2ant2l A B C C 0 D D 0 B D D = B
28 27 oveq1d A B C C 0 D D 0 B D D C = B C
29 23 24 28 3eqtr2d A B C C 0 D D 0 B D C D = B C
30 21 29 eqeq12d A B C C 0 D D 0 A C C D = B D C D A D = B C
31 13 30 bitr3d A B C C 0 D D 0 A C = B D A D = B C