Metamath Proof Explorer


Theorem divne1d

Description: If two complex numbers are unequal, their quotient is not one. Contrapositive of diveq1d . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses div1d.1 φ A
divcld.2 φ B
divcld.3 φ B 0
divne1d.4 φ A B
Assertion divne1d φ A B 1

Proof

Step Hyp Ref Expression
1 div1d.1 φ A
2 divcld.2 φ B
3 divcld.3 φ B 0
4 divne1d.4 φ A B
5 1 2 3 diveq1ad φ A B = 1 A = B
6 5 necon3bid φ A B 1 A B
7 4 6 mpbird φ A B 1