Metamath Proof Explorer


Theorem divneg

Description: Move negative sign inside of a division. (Contributed by NM, 17-Sep-2004)

Ref Expression
Assertion divneg A B B 0 A B = A B

Proof

Step Hyp Ref Expression
1 reccl B B 0 1 B
2 mulneg1 A 1 B A 1 B = A 1 B
3 1 2 sylan2 A B B 0 A 1 B = A 1 B
4 3 3impb A B B 0 A 1 B = A 1 B
5 negcl A A
6 divrec A B B 0 A B = A 1 B
7 5 6 syl3an1 A B B 0 A B = A 1 B
8 divrec A B B 0 A B = A 1 B
9 8 negeqd A B B 0 A B = A 1 B
10 4 7 9 3eqtr4rd A B B 0 A B = A B