Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
divneg
Next ⟩
muldivdir
Metamath Proof Explorer
Ascii
Unicode
Theorem
divneg
Description:
Move negative sign inside of a division.
(Contributed by
NM
, 17-Sep-2004)
Ref
Expression
Assertion
divneg
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
−
A
B
=
−
A
B
Proof
Step
Hyp
Ref
Expression
1
reccl
⊢
B
∈
ℂ
∧
B
≠
0
→
1
B
∈
ℂ
2
mulneg1
⊢
A
∈
ℂ
∧
1
B
∈
ℂ
→
−
A
⁢
1
B
=
−
A
⁢
1
B
3
1
2
sylan2
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
−
A
⁢
1
B
=
−
A
⁢
1
B
4
3
3impb
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
−
A
⁢
1
B
=
−
A
⁢
1
B
5
negcl
⊢
A
∈
ℂ
→
−
A
∈
ℂ
6
divrec
⊢
−
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
−
A
B
=
−
A
⁢
1
B
7
5
6
syl3an1
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
−
A
B
=
−
A
⁢
1
B
8
divrec
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
A
B
=
A
⁢
1
B
9
8
negeqd
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
−
A
B
=
−
A
⁢
1
B
10
4
7
9
3eqtr4rd
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
−
A
B
=
−
A
B