Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Division
divneg2
Next ⟩
recclzi
Metamath Proof Explorer
Ascii
Unicode
Theorem
divneg2
Description:
Move negative sign inside of a division.
(Contributed by
Mario Carneiro
, 15-Sep-2014)
Ref
Expression
Assertion
divneg2
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
−
A
B
=
A
−
B
Proof
Step
Hyp
Ref
Expression
1
divneg
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
−
A
B
=
−
A
B
2
negcl
⊢
A
∈
ℂ
→
−
A
∈
ℂ
3
div2neg
⊢
−
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
−
−
A
−
B
=
−
A
B
4
2
3
syl3an1
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
−
−
A
−
B
=
−
A
B
5
negneg
⊢
A
∈
ℂ
→
−
−
A
=
A
6
5
3ad2ant1
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
−
−
A
=
A
7
6
oveq1d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
−
−
A
−
B
=
A
−
B
8
1
4
7
3eqtr2d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
B
≠
0
→
−
A
B
=
A
−
B