Metamath Proof Explorer


Theorem divneg2

Description: Move negative sign inside of a division. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion divneg2 A B B 0 A B = A B

Proof

Step Hyp Ref Expression
1 divneg A B B 0 A B = A B
2 negcl A A
3 div2neg A B B 0 A B = A B
4 2 3 syl3an1 A B B 0 A B = A B
5 negneg A A = A
6 5 3ad2ant1 A B B 0 A = A
7 6 oveq1d A B B 0 A B = A B
8 1 4 7 3eqtr2d A B B 0 A B = A B