Step |
Hyp |
Ref |
Expression |
1 |
|
abscl |
|
2 |
|
rerpdivcl |
|
3 |
1 2
|
sylan |
|
4 |
|
simpll |
|
5 |
|
rpcn |
|
6 |
5
|
ad2antrl |
|
7 |
|
rpne0 |
|
8 |
7
|
ad2antrl |
|
9 |
4 6 8
|
absdivd |
|
10 |
|
rpre |
|
11 |
10
|
ad2antrl |
|
12 |
|
rpge0 |
|
13 |
12
|
ad2antrl |
|
14 |
11 13
|
absidd |
|
15 |
14
|
oveq2d |
|
16 |
9 15
|
eqtrd |
|
17 |
|
simprr |
|
18 |
4
|
abscld |
|
19 |
|
rpre |
|
20 |
19
|
ad2antlr |
|
21 |
|
rpgt0 |
|
22 |
21
|
ad2antlr |
|
23 |
|
rpgt0 |
|
24 |
23
|
ad2antrl |
|
25 |
|
ltdiv23 |
|
26 |
18 20 22 11 24 25
|
syl122anc |
|
27 |
17 26
|
mpbid |
|
28 |
16 27
|
eqbrtrd |
|
29 |
28
|
expr |
|
30 |
29
|
ralrimiva |
|
31 |
|
breq1 |
|
32 |
31
|
rspceaimv |
|
33 |
3 30 32
|
syl2anc |
|
34 |
33
|
ralrimiva |
|
35 |
|
simpl |
|
36 |
5
|
adantl |
|
37 |
7
|
adantl |
|
38 |
35 36 37
|
divcld |
|
39 |
38
|
ralrimiva |
|
40 |
|
rpssre |
|
41 |
40
|
a1i |
|
42 |
39 41
|
rlim0lt |
|
43 |
34 42
|
mpbird |
|