| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abscl |
|
| 2 |
|
rerpdivcl |
|
| 3 |
1 2
|
sylan |
|
| 4 |
|
simpll |
|
| 5 |
|
rpcn |
|
| 6 |
5
|
ad2antrl |
|
| 7 |
|
rpne0 |
|
| 8 |
7
|
ad2antrl |
|
| 9 |
4 6 8
|
absdivd |
|
| 10 |
|
rpre |
|
| 11 |
10
|
ad2antrl |
|
| 12 |
|
rpge0 |
|
| 13 |
12
|
ad2antrl |
|
| 14 |
11 13
|
absidd |
|
| 15 |
14
|
oveq2d |
|
| 16 |
9 15
|
eqtrd |
|
| 17 |
|
simprr |
|
| 18 |
4
|
abscld |
|
| 19 |
|
rpre |
|
| 20 |
19
|
ad2antlr |
|
| 21 |
|
rpgt0 |
|
| 22 |
21
|
ad2antlr |
|
| 23 |
|
rpgt0 |
|
| 24 |
23
|
ad2antrl |
|
| 25 |
|
ltdiv23 |
|
| 26 |
18 20 22 11 24 25
|
syl122anc |
|
| 27 |
17 26
|
mpbid |
|
| 28 |
16 27
|
eqbrtrd |
|
| 29 |
28
|
expr |
|
| 30 |
29
|
ralrimiva |
|
| 31 |
|
breq1 |
|
| 32 |
31
|
rspceaimv |
|
| 33 |
3 30 32
|
syl2anc |
|
| 34 |
33
|
ralrimiva |
|
| 35 |
|
simpl |
|
| 36 |
5
|
adantl |
|
| 37 |
7
|
adantl |
|
| 38 |
35 36 37
|
divcld |
|
| 39 |
38
|
ralrimiva |
|
| 40 |
|
rpssre |
|
| 41 |
40
|
a1i |
|
| 42 |
39 41
|
rlim0lt |
|
| 43 |
34 42
|
mpbird |
|