Metamath Proof Explorer


Theorem divrcnv

Description: The sequence of reciprocals of real numbers, multiplied by the factor A , converges to zero. (Contributed by Mario Carneiro, 18-Sep-2014)

Ref Expression
Assertion divrcnv A n + A n 0

Proof

Step Hyp Ref Expression
1 abscl A A
2 rerpdivcl A x + A x
3 1 2 sylan A x + A x
4 simpll A x + n + A x < n A
5 rpcn n + n
6 5 ad2antrl A x + n + A x < n n
7 rpne0 n + n 0
8 7 ad2antrl A x + n + A x < n n 0
9 4 6 8 absdivd A x + n + A x < n A n = A n
10 rpre n + n
11 10 ad2antrl A x + n + A x < n n
12 rpge0 n + 0 n
13 12 ad2antrl A x + n + A x < n 0 n
14 11 13 absidd A x + n + A x < n n = n
15 14 oveq2d A x + n + A x < n A n = A n
16 9 15 eqtrd A x + n + A x < n A n = A n
17 simprr A x + n + A x < n A x < n
18 4 abscld A x + n + A x < n A
19 rpre x + x
20 19 ad2antlr A x + n + A x < n x
21 rpgt0 x + 0 < x
22 21 ad2antlr A x + n + A x < n 0 < x
23 rpgt0 n + 0 < n
24 23 ad2antrl A x + n + A x < n 0 < n
25 ltdiv23 A x 0 < x n 0 < n A x < n A n < x
26 18 20 22 11 24 25 syl122anc A x + n + A x < n A x < n A n < x
27 17 26 mpbid A x + n + A x < n A n < x
28 16 27 eqbrtrd A x + n + A x < n A n < x
29 28 expr A x + n + A x < n A n < x
30 29 ralrimiva A x + n + A x < n A n < x
31 breq1 y = A x y < n A x < n
32 31 rspceaimv A x n + A x < n A n < x y n + y < n A n < x
33 3 30 32 syl2anc A x + y n + y < n A n < x
34 33 ralrimiva A x + y n + y < n A n < x
35 simpl A n + A
36 5 adantl A n + n
37 7 adantl A n + n 0
38 35 36 37 divcld A n + A n
39 38 ralrimiva A n + A n
40 rpssre +
41 40 a1i A +
42 39 41 rlim0lt A n + A n 0 x + y n + y < n A n < x
43 34 42 mpbird A n + A n 0