Metamath Proof Explorer


Theorem divrec

Description: Relationship between division and reciprocal. Theorem I.9 of Apostol p. 18. (Contributed by NM, 2-Aug-2004) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion divrec A B B 0 A B = A 1 B

Proof

Step Hyp Ref Expression
1 simp2 A B B 0 B
2 simp1 A B B 0 A
3 reccl B B 0 1 B
4 3 3adant1 A B B 0 1 B
5 1 2 4 mul12d A B B 0 B A 1 B = A B 1 B
6 recid B B 0 B 1 B = 1
7 6 3adant1 A B B 0 B 1 B = 1
8 7 oveq2d A B B 0 A B 1 B = A 1
9 2 mulid1d A B B 0 A 1 = A
10 5 8 9 3eqtrd A B B 0 B A 1 B = A
11 2 4 mulcld A B B 0 A 1 B
12 3simpc A B B 0 B B 0
13 divmul A A 1 B B B 0 A B = A 1 B B A 1 B = A
14 2 11 12 13 syl3anc A B B 0 A B = A 1 B B A 1 B = A
15 10 14 mpbird A B B 0 A B = A 1 B