Metamath Proof Explorer


Theorem divrecd

Description: Relationship between division and reciprocal. Theorem I.9 of Apostol p. 18. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses div1d.1 φ A
divcld.2 φ B
divcld.3 φ B 0
Assertion divrecd φ A B = A 1 B

Proof

Step Hyp Ref Expression
1 div1d.1 φ A
2 divcld.2 φ B
3 divcld.3 φ B 0
4 divrec A B B 0 A B = A 1 B
5 1 2 3 4 syl3anc φ A B = A 1 B