Metamath Proof Explorer


Theorem divs1

Description: A surreal divided by one is itself. (Contributed by Scott Fenton, 13-Mar-2025)

Ref Expression
Assertion divs1 A No A / su 1 s = A

Proof

Step Hyp Ref Expression
1 mulslid A No 1 s s A = A
2 1sno 1 s No
3 0slt1s 0 s < s 1 s
4 sgt0ne0 0 s < s 1 s 1 s 0 s
5 3 4 ax-mp 1 s 0 s
6 2 5 pm3.2i 1 s No 1 s 0 s
7 mulslid 1 s No 1 s s 1 s = 1 s
8 2 7 ax-mp 1 s s 1 s = 1 s
9 oveq2 x = 1 s 1 s s x = 1 s s 1 s
10 9 eqeq1d x = 1 s 1 s s x = 1 s 1 s s 1 s = 1 s
11 10 rspcev 1 s No 1 s s 1 s = 1 s x No 1 s s x = 1 s
12 2 8 11 mp2an x No 1 s s x = 1 s
13 divsmulw A No A No 1 s No 1 s 0 s x No 1 s s x = 1 s A / su 1 s = A 1 s s A = A
14 12 13 mpan2 A No A No 1 s No 1 s 0 s A / su 1 s = A 1 s s A = A
15 6 14 mp3an3 A No A No A / su 1 s = A 1 s s A = A
16 15 anidms A No A / su 1 s = A 1 s s A = A
17 1 16 mpbird A No A / su 1 s = A