Metamath Proof Explorer


Theorem divsassd

Description: An associative law for surreal division. (Contributed by Scott Fenton, 16-Mar-2025)

Ref Expression
Hypotheses divsassd.1 φ A No
divsassd.2 φ B No
divsassd.3 φ C No
divsassd.4 φ C 0 s
Assertion divsassd φ A s B / su C = A s B / su C

Proof

Step Hyp Ref Expression
1 divsassd.1 φ A No
2 divsassd.2 φ B No
3 divsassd.3 φ C No
4 divsassd.4 φ C 0 s
5 3 4 recsexd φ x No C s x = 1 s
6 1 2 3 4 5 divsasswd φ A s B / su C = A s B / su C