Metamath Proof Explorer


Theorem divsasswd

Description: An associative law for surreal division. Weak version. (Contributed by Scott Fenton, 14-Mar-2025)

Ref Expression
Hypotheses divsasswd.1 φ A No
divsasswd.2 φ B No
divsasswd.3 φ C No
divsasswd.4 φ C 0 s
divsasswd.5 φ x No C s x = 1 s
Assertion divsasswd φ A s B / su C = A s B / su C

Proof

Step Hyp Ref Expression
1 divsasswd.1 φ A No
2 divsasswd.2 φ B No
3 divsasswd.3 φ C No
4 divsasswd.4 φ C 0 s
5 divsasswd.5 φ x No C s x = 1 s
6 2 3 4 5 divscan2wd φ C s B / su C = B
7 6 oveq2d φ A s C s B / su C = A s B
8 2 3 4 5 divsclwd φ B / su C No
9 3 1 8 muls12d φ C s A s B / su C = A s C s B / su C
10 1 2 mulscld φ A s B No
11 10 3 4 5 divscan2wd φ C s A s B / su C = A s B
12 7 9 11 3eqtr4rd φ C s A s B / su C = C s A s B / su C
13 10 3 4 5 divsclwd φ A s B / su C No
14 1 8 mulscld φ A s B / su C No
15 13 14 3 4 mulscan1d φ C s A s B / su C = C s A s B / su C A s B / su C = A s B / su C
16 12 15 mpbid φ A s B / su C = A s B / su C