Metamath Proof Explorer


Theorem divscan1d

Description: A cancellation law for surreal division. (Contributed by Scott Fenton, 16-Mar-2025)

Ref Expression
Hypotheses divscan2d.1 φ A No
divscan2d.2 φ B No
divscan2d.3 φ B 0 s
Assertion divscan1d φ A / su B s B = A

Proof

Step Hyp Ref Expression
1 divscan2d.1 φ A No
2 divscan2d.2 φ B No
3 divscan2d.3 φ B 0 s
4 2 3 recsexd φ x No B s x = 1 s
5 1 2 3 4 divscan1wd φ A / su B s B = A