Metamath Proof Explorer


Theorem divscan1wd

Description: A weak cancellation law for surreal division. (Contributed by Scott Fenton, 13-Mar-2025)

Ref Expression
Hypotheses divscan2wd.1 φ A No
divscan2wd.2 φ B No
divscan2wd.3 φ B 0 s
divscan2wd.4 φ x No B s x = 1 s
Assertion divscan1wd φ A / su B s B = A

Proof

Step Hyp Ref Expression
1 divscan2wd.1 φ A No
2 divscan2wd.2 φ B No
3 divscan2wd.3 φ B 0 s
4 divscan2wd.4 φ x No B s x = 1 s
5 1 2 3 4 divsclwd φ A / su B No
6 5 2 mulscomd φ A / su B s B = B s A / su B
7 1 2 3 4 divscan2wd φ B s A / su B = A
8 6 7 eqtrd φ A / su B s B = A