Metamath Proof Explorer


Theorem divscl

Description: Surreal division closure law. (Contributed by Scott Fenton, 16-Mar-2025)

Ref Expression
Assertion divscl Could not format assertion : No typesetting found for |- ( ( A e. No /\ B e. No /\ B =/= 0s ) -> ( A /su B ) e. No ) with typecode |-

Proof

Step Hyp Ref Expression
1 recsex Could not format ( ( B e. No /\ B =/= 0s ) -> E. x e. No ( B x.s x ) = 1s ) : No typesetting found for |- ( ( B e. No /\ B =/= 0s ) -> E. x e. No ( B x.s x ) = 1s ) with typecode |-
2 1 3adant1 Could not format ( ( A e. No /\ B e. No /\ B =/= 0s ) -> E. x e. No ( B x.s x ) = 1s ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ B =/= 0s ) -> E. x e. No ( B x.s x ) = 1s ) with typecode |-
3 divsclw Could not format ( ( ( A e. No /\ B e. No /\ B =/= 0s ) /\ E. x e. No ( B x.s x ) = 1s ) -> ( A /su B ) e. No ) : No typesetting found for |- ( ( ( A e. No /\ B e. No /\ B =/= 0s ) /\ E. x e. No ( B x.s x ) = 1s ) -> ( A /su B ) e. No ) with typecode |-
4 2 3 mpdan Could not format ( ( A e. No /\ B e. No /\ B =/= 0s ) -> ( A /su B ) e. No ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ B =/= 0s ) -> ( A /su B ) e. No ) with typecode |-