Metamath Proof Explorer


Theorem divscld

Description: Surreal division closure law. (Contributed by Scott Fenton, 16-Mar-2025)

Ref Expression
Hypotheses divscld.1 φ A No
divscld.2 φ B No
divscld.3 φ B 0 s
Assertion divscld φ A / su B No

Proof

Step Hyp Ref Expression
1 divscld.1 φ A No
2 divscld.2 φ B No
3 divscld.3 φ B 0 s
4 divscl A No B No B 0 s A / su B No
5 1 2 3 4 syl3anc φ A / su B No