Metamath Proof Explorer


Theorem divsclw

Description: Weak division closure law. (Contributed by Scott Fenton, 12-Mar-2025)

Ref Expression
Assertion divsclw A No B No B 0 s x No B s x = 1 s A / su B No

Proof

Step Hyp Ref Expression
1 divsval A No B No B 0 s A / su B = ι y No | B s y = A
2 1 adantr A No B No B 0 s x No B s x = 1 s A / su B = ι y No | B s y = A
3 3anrot A No B No B 0 s B No B 0 s A No
4 noreceuw B No B 0 s A No x No B s x = 1 s ∃! y No B s y = A
5 3 4 sylanb A No B No B 0 s x No B s x = 1 s ∃! y No B s y = A
6 riotacl ∃! y No B s y = A ι y No | B s y = A No
7 5 6 syl A No B No B 0 s x No B s x = 1 s ι y No | B s y = A No
8 2 7 eqeltrd A No B No B 0 s x No B s x = 1 s A / su B No