Database
SURREAL NUMBERS
Surreal arithmetic
Division
divsclw
Next ⟩
divsclwd
Metamath Proof Explorer
Ascii
Unicode
Theorem
divsclw
Description:
Weak division closure law.
(Contributed by
Scott Fenton
, 12-Mar-2025)
Ref
Expression
Assertion
divsclw
⊢
A
∈
No
∧
B
∈
No
∧
B
≠
0
s
∧
∃
x
∈
No
B
⋅
s
x
=
1
s
→
A
/
su
B
∈
No
Proof
Step
Hyp
Ref
Expression
1
divsval
⊢
A
∈
No
∧
B
∈
No
∧
B
≠
0
s
→
A
/
su
B
=
ι
y
∈
No
|
B
⋅
s
y
=
A
2
1
adantr
⊢
A
∈
No
∧
B
∈
No
∧
B
≠
0
s
∧
∃
x
∈
No
B
⋅
s
x
=
1
s
→
A
/
su
B
=
ι
y
∈
No
|
B
⋅
s
y
=
A
3
3anrot
⊢
A
∈
No
∧
B
∈
No
∧
B
≠
0
s
↔
B
∈
No
∧
B
≠
0
s
∧
A
∈
No
4
noreceuw
⊢
B
∈
No
∧
B
≠
0
s
∧
A
∈
No
∧
∃
x
∈
No
B
⋅
s
x
=
1
s
→
∃!
y
∈
No
B
⋅
s
y
=
A
5
3
4
sylanb
⊢
A
∈
No
∧
B
∈
No
∧
B
≠
0
s
∧
∃
x
∈
No
B
⋅
s
x
=
1
s
→
∃!
y
∈
No
B
⋅
s
y
=
A
6
riotacl
⊢
∃!
y
∈
No
B
⋅
s
y
=
A
→
ι
y
∈
No
|
B
⋅
s
y
=
A
∈
No
7
5
6
syl
⊢
A
∈
No
∧
B
∈
No
∧
B
≠
0
s
∧
∃
x
∈
No
B
⋅
s
x
=
1
s
→
ι
y
∈
No
|
B
⋅
s
y
=
A
∈
No
8
2
7
eqeltrd
⊢
A
∈
No
∧
B
∈
No
∧
B
≠
0
s
∧
∃
x
∈
No
B
⋅
s
x
=
1
s
→
A
/
su
B
∈
No