Metamath Proof Explorer


Theorem divsclwd

Description: Weak division closure law. (Contributed by Scott Fenton, 12-Mar-2025)

Ref Expression
Hypotheses divsclwd.1 φ A No
divsclwd.2 φ B No
divsclwd.3 φ B 0 s
divsclwd.4 φ x No B s x = 1 s
Assertion divsclwd φ A / su B No

Proof

Step Hyp Ref Expression
1 divsclwd.1 φ A No
2 divsclwd.2 φ B No
3 divsclwd.3 φ B 0 s
4 divsclwd.4 φ x No B s x = 1 s
5 divsclw A No B No B 0 s x No B s x = 1 s A / su B No
6 1 2 3 4 5 syl31anc φ A / su B No