Metamath Proof Explorer


Theorem divsmo

Description: Uniqueness of surreal inversion. Given a non-zero surreal A , there is at most one surreal giving a particular product. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Assertion divsmo A No A 0 s * x No A s x = B

Proof

Step Hyp Ref Expression
1 eqtr3 A s x = B A s y = B A s x = A s y
2 simprl A No A 0 s x No y No x No
3 simprr A No A 0 s x No y No y No
4 simpll A No A 0 s x No y No A No
5 simplr A No A 0 s x No y No A 0 s
6 2 3 4 5 mulscan1d A No A 0 s x No y No A s x = A s y x = y
7 1 6 imbitrid A No A 0 s x No y No A s x = B A s y = B x = y
8 7 ralrimivva A No A 0 s x No y No A s x = B A s y = B x = y
9 oveq2 x = y A s x = A s y
10 9 eqeq1d x = y A s x = B A s y = B
11 10 rmo4 * x No A s x = B x No y No A s x = B A s y = B x = y
12 8 11 sylibr A No A 0 s * x No A s x = B