Metamath Proof Explorer


Theorem divsmul

Description: Relationship between surreal division and multiplication. (Contributed by Scott Fenton, 16-Mar-2025)

Ref Expression
Assertion divsmul A No B No C No C 0 s A / su C = B C s B = A

Proof

Step Hyp Ref Expression
1 recsex C No C 0 s x No C s x = 1 s
2 1 3ad2ant3 A No B No C No C 0 s x No C s x = 1 s
3 divsmulw A No B No C No C 0 s x No C s x = 1 s A / su C = B C s B = A
4 2 3 mpdan A No B No C No C 0 s A / su C = B C s B = A