Metamath Proof Explorer


Theorem divsmuld

Description: Relationship between surreal division and multiplication. (Contributed by Scott Fenton, 16-Mar-2025)

Ref Expression
Hypotheses divsmuld.1 φ A No
divsmuld.2 φ B No
divsmuld.3 φ C No
divsmuld.4 φ C 0 s
Assertion divsmuld φ A / su C = B C s B = A

Proof

Step Hyp Ref Expression
1 divsmuld.1 φ A No
2 divsmuld.2 φ B No
3 divsmuld.3 φ C No
4 divsmuld.4 φ C 0 s
5 3 4 recsexd φ x No C s x = 1 s
6 1 2 3 4 5 divsmulwd φ A / su C = B C s B = A