Metamath Proof Explorer


Theorem divsmulwd

Description: Relationship between surreal division and multiplication. Weak version that does not assume reciprocals. (Contributed by Scott Fenton, 12-Mar-2025)

Ref Expression
Hypotheses divsmulwd.1 φ A No
divsmulwd.2 φ B No
divsmulwd.3 φ C No
divsmulwd.4 φ C 0 s
divsmulwd.5 φ x No C s x = 1 s
Assertion divsmulwd φ A / su C = B C s B = A

Proof

Step Hyp Ref Expression
1 divsmulwd.1 φ A No
2 divsmulwd.2 φ B No
3 divsmulwd.3 φ C No
4 divsmulwd.4 φ C 0 s
5 divsmulwd.5 φ x No C s x = 1 s
6 3 4 jca φ C No C 0 s
7 divsmulw A No B No C No C 0 s x No C s x = 1 s A / su C = B C s B = A
8 1 2 6 5 7 syl31anc φ A / su C = B C s B = A