Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Number Theory
divsqrtid
Next ⟩
cxpcncf1
Metamath Proof Explorer
Ascii
Unicode
Theorem
divsqrtid
Description:
A real number divided by its square root.
(Contributed by
Thierry Arnoux
, 1-Jan-2022)
Ref
Expression
Assertion
divsqrtid
⊢
A
∈
ℝ
+
→
A
A
=
A
Proof
Step
Hyp
Ref
Expression
1
rpre
⊢
A
∈
ℝ
+
→
A
∈
ℝ
2
rpge0
⊢
A
∈
ℝ
+
→
0
≤
A
3
remsqsqrt
⊢
A
∈
ℝ
∧
0
≤
A
→
A
⁢
A
=
A
4
1
2
3
syl2anc
⊢
A
∈
ℝ
+
→
A
⁢
A
=
A
5
4
oveq1d
⊢
A
∈
ℝ
+
→
A
⁢
A
A
=
A
A
6
1
recnd
⊢
A
∈
ℝ
+
→
A
∈
ℂ
7
6
sqrtcld
⊢
A
∈
ℝ
+
→
A
∈
ℂ
8
rpsqrtcl
⊢
A
∈
ℝ
+
→
A
∈
ℝ
+
9
8
rpne0d
⊢
A
∈
ℝ
+
→
A
≠
0
10
7
7
9
divcan4d
⊢
A
∈
ℝ
+
→
A
⁢
A
A
=
A
11
5
10
eqtr3d
⊢
A
∈
ℝ
+
→
A
A
=
A