Metamath Proof Explorer


Theorem divsqrtid

Description: A real number divided by its square root. (Contributed by Thierry Arnoux, 1-Jan-2022)

Ref Expression
Assertion divsqrtid A + A A = A

Proof

Step Hyp Ref Expression
1 rpre A + A
2 rpge0 A + 0 A
3 remsqsqrt A 0 A A A = A
4 1 2 3 syl2anc A + A A = A
5 4 oveq1d A + A A A = A A
6 1 recnd A + A
7 6 sqrtcld A + A
8 rpsqrtcl A + A +
9 8 rpne0d A + A 0
10 7 7 9 divcan4d A + A A A = A
11 5 10 eqtr3d A + A A = A