Metamath Proof Explorer


Theorem divsqrtsum2

Description: A bound on the distance of the sum sum_ n <_ x ( 1 / sqrt n ) from its asymptotic value 2 sqrt x + L . (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypotheses divsqrtsum.2 F = x + n = 1 x 1 n 2 x
divsqrsum2.1 φ F L
Assertion divsqrtsum2 φ A + F A L 1 A

Proof

Step Hyp Ref Expression
1 divsqrtsum.2 F = x + n = 1 x 1 n 2 x
2 divsqrsum2.1 φ F L
3 1 divsqrtsumlem F : + F dom F L A + F A L 1 A
4 3 simp3i F L A + F A L 1 A
5 2 4 sylan φ A + F A L 1 A