Metamath Proof Explorer


Theorem divsqrtsumlem

Description: Lemma for divsqrsum and divsqrtsum2 . (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypothesis divsqrtsum.2 F = x + n = 1 x 1 n 2 x
Assertion divsqrtsumlem F : + F dom F L A + F A L 1 A

Proof

Step Hyp Ref Expression
1 divsqrtsum.2 F = x + n = 1 x 1 n 2 x
2 ioorp 0 +∞ = +
3 2 eqcomi + = 0 +∞
4 nnuz = 1
5 1zzd 1
6 0red 0
7 1re 1
8 0nn0 0 0
9 7 8 nn0addge2i 1 0 + 1
10 9 a1i 1 0 + 1
11 2re 2
12 rpsqrtcl x + x +
13 12 adantl x + x +
14 13 rpred x + x
15 remulcl 2 x 2 x
16 11 14 15 sylancr x + 2 x
17 13 rprecred x + 1 x
18 nnrp x x +
19 18 17 sylan2 x 1 x
20 reelprrecn
21 20 a1i
22 13 rpcnd x + x
23 2rp 2 +
24 rpmulcl 2 + x + 2 x +
25 23 13 24 sylancr x + 2 x +
26 25 rpreccld x + 1 2 x +
27 dvsqrt dx + x d x = x + 1 2 x
28 27 a1i dx + x d x = x + 1 2 x
29 2cnd 2
30 21 22 26 28 29 dvmptcmul dx + 2 x d x = x + 2 1 2 x
31 2cnd x + 2
32 1cnd x + 1
33 25 rpcnne0d x + 2 x 2 x 0
34 divass 2 1 2 x 2 x 0 2 1 2 x = 2 1 2 x
35 31 32 33 34 syl3anc x + 2 1 2 x = 2 1 2 x
36 13 rpcnne0d x + x x 0
37 rpcnne0 2 + 2 2 0
38 23 37 mp1i x + 2 2 0
39 divcan5 1 x x 0 2 2 0 2 1 2 x = 1 x
40 32 36 38 39 syl3anc x + 2 1 2 x = 1 x
41 35 40 eqtr3d x + 2 1 2 x = 1 x
42 41 mpteq2dva x + 2 1 2 x = x + 1 x
43 30 42 eqtrd dx + 2 x d x = x + 1 x
44 fveq2 x = n x = n
45 44 oveq2d x = n 1 x = 1 n
46 simp3r x + n + 0 x x n x n
47 simp2l x + n + 0 x x n x +
48 47 rprege0d x + n + 0 x x n x 0 x
49 simp2r x + n + 0 x x n n +
50 49 rprege0d x + n + 0 x x n n 0 n
51 sqrtle x 0 x n 0 n x n x n
52 48 50 51 syl2anc x + n + 0 x x n x n x n
53 46 52 mpbid x + n + 0 x x n x n
54 47 rpsqrtcld x + n + 0 x x n x +
55 49 rpsqrtcld x + n + 0 x x n n +
56 54 55 lerecd x + n + 0 x x n x n 1 n 1 x
57 53 56 mpbid x + n + 0 x x n 1 n 1 x
58 sqrtlim x + 1 x 0
59 58 a1i x + 1 x 0
60 fveq2 x = A x = A
61 60 oveq2d x = A 1 x = 1 A
62 3 4 5 6 10 6 16 17 19 43 45 57 1 59 61 dvfsumrlim3 F : + F dom F L A + 0 A F A L 1 A
63 62 simp1d F : +
64 63 mptru F : +
65 62 simp2d F dom
66 65 mptru F dom
67 rpge0 A + 0 A
68 67 adantl F L A + 0 A
69 62 simp3d F L A + 0 A F A L 1 A
70 69 mptru F L A + 0 A F A L 1 A
71 68 70 mpd3an3 F L A + F A L 1 A
72 64 66 71 3pm3.2i F : + F dom F L A + F A L 1 A