Step |
Hyp |
Ref |
Expression |
1 |
|
divsqrtsum.2 |
|
2 |
|
divsqrsum2.1 |
|
3 |
|
rpssre |
|
4 |
3
|
a1i |
|
5 |
1
|
divsqrsumf |
|
6 |
5
|
ffvelrni |
|
7 |
|
rpsup |
|
8 |
7
|
a1i |
|
9 |
5
|
a1i |
|
10 |
9
|
feqmptd |
|
11 |
10 2
|
eqbrtrrd |
|
12 |
6
|
adantl |
|
13 |
8 11 12
|
rlimrecl |
|
14 |
|
resubcl |
|
15 |
6 13 14
|
syl2anr |
|
16 |
15
|
recnd |
|
17 |
|
rpsqrtcl |
|
18 |
17
|
adantl |
|
19 |
18
|
rpcnd |
|
20 |
16 19
|
mulcld |
|
21 |
|
1red |
|
22 |
16 19
|
absmuld |
|
23 |
18
|
rprege0d |
|
24 |
|
absid |
|
25 |
23 24
|
syl |
|
26 |
25
|
oveq2d |
|
27 |
22 26
|
eqtrd |
|
28 |
1 2
|
divsqrtsum2 |
|
29 |
16
|
abscld |
|
30 |
|
1red |
|
31 |
29 30 18
|
lemuldivd |
|
32 |
28 31
|
mpbird |
|
33 |
27 32
|
eqbrtrd |
|
34 |
33
|
adantrr |
|
35 |
4 20 21 21 34
|
elo1d |
|