Metamath Proof Explorer


Theorem divsubdiv

Description: Subtraction of two ratios. (Contributed by Scott Fenton, 22-Apr-2014) (Revised by Mario Carneiro, 2-May-2016)

Ref Expression
Assertion divsubdiv A B C C 0 D D 0 A C B D = A D B C C D

Proof

Step Hyp Ref Expression
1 negcl B B
2 divadddiv A B C C 0 D D 0 A C + B D = A D + B C C D
3 1 2 sylanl2 A B C C 0 D D 0 A C + B D = A D + B C C D
4 simplr A B C C 0 D D 0 B
5 simprrl A B C C 0 D D 0 D
6 simprrr A B C C 0 D D 0 D 0
7 divneg B D D 0 B D = B D
8 4 5 6 7 syl3anc A B C C 0 D D 0 B D = B D
9 8 oveq2d A B C C 0 D D 0 A C + B D = A C + B D
10 simpll A B C C 0 D D 0 A
11 simprll A B C C 0 D D 0 C
12 simprlr A B C C 0 D D 0 C 0
13 divcl A C C 0 A C
14 10 11 12 13 syl3anc A B C C 0 D D 0 A C
15 divcl B D D 0 B D
16 4 5 6 15 syl3anc A B C C 0 D D 0 B D
17 14 16 negsubd A B C C 0 D D 0 A C + B D = A C B D
18 9 17 eqtr3d A B C C 0 D D 0 A C + B D = A C B D
19 3 18 eqtr3d A B C C 0 D D 0 A D + B C C D = A C B D
20 4 11 mulneg1d A B C C 0 D D 0 B C = B C
21 20 oveq2d A B C C 0 D D 0 A D + B C = A D + B C
22 10 5 mulcld A B C C 0 D D 0 A D
23 4 11 mulcld A B C C 0 D D 0 B C
24 22 23 negsubd A B C C 0 D D 0 A D + B C = A D B C
25 21 24 eqtrd A B C C 0 D D 0 A D + B C = A D B C
26 25 oveq1d A B C C 0 D D 0 A D + B C C D = A D B C C D
27 19 26 eqtr3d A B C C 0 D D 0 A C B D = A D B C C D