Metamath Proof Explorer


Theorem divsval

Description: The value of surreal division. (Contributed by Scott Fenton, 12-Mar-2025)

Ref Expression
Assertion divsval A No B No B 0 s A / su B = ι x No | B s x = A

Proof

Step Hyp Ref Expression
1 eldifsn B No 0 s B No B 0 s
2 eqeq2 y = A z s x = y z s x = A
3 2 riotabidv y = A ι x No | z s x = y = ι x No | z s x = A
4 oveq1 z = B z s x = B s x
5 4 eqeq1d z = B z s x = A B s x = A
6 5 riotabidv z = B ι x No | z s x = A = ι x No | B s x = A
7 df-divs / su = y No , z No 0 s ι x No | z s x = y
8 riotaex ι x No | B s x = A V
9 3 6 7 8 ovmpo A No B No 0 s A / su B = ι x No | B s x = A
10 1 9 sylan2br A No B No B 0 s A / su B = ι x No | B s x = A
11 10 3impb A No B No B 0 s A / su B = ι x No | B s x = A