| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|
| 2 |
|
1oex |
|
| 3 |
|
djuex |
|
| 4 |
1 2 3
|
sylancl |
|
| 5 |
|
simpr |
|
| 6 |
|
df1o2 |
|
| 7 |
6
|
xpeq2i |
|
| 8 |
|
0ex |
|
| 9 |
2 8
|
xpsn |
|
| 10 |
7 9
|
eqtri |
|
| 11 |
|
ssun2 |
|
| 12 |
10 11
|
eqsstrri |
|
| 13 |
|
opex |
|
| 14 |
13
|
snss |
|
| 15 |
12 14
|
mpbir |
|
| 16 |
|
df-dju |
|
| 17 |
15 16
|
eleqtrri |
|
| 18 |
17
|
a1i |
|
| 19 |
|
difsnen |
|
| 20 |
4 5 18 19
|
syl3anc |
|
| 21 |
16
|
difeq1i |
|
| 22 |
|
xp01disjl |
|
| 23 |
|
disj3 |
|
| 24 |
22 23
|
mpbi |
|
| 25 |
|
difun2 |
|
| 26 |
10
|
difeq2i |
|
| 27 |
24 25 26
|
3eqtr2i |
|
| 28 |
21 27
|
eqtr4i |
|
| 29 |
|
xpsnen2g |
|
| 30 |
8 1 29
|
sylancr |
|
| 31 |
28 30
|
eqbrtrid |
|
| 32 |
|
entr |
|
| 33 |
20 31 32
|
syl2anc |
|