Metamath Proof Explorer


Theorem dju1en

Description: Cardinal addition with cardinal one (which is the same as ordinal one). Used in proof of Theorem 6J of Enderton p. 143. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion dju1en A V ¬ A A A ⊔︀ 1 𝑜 suc A

Proof

Step Hyp Ref Expression
1 enrefg A V A A
2 1 adantr A V ¬ A A A A
3 ensn1g A V A 1 𝑜
4 3 ensymd A V 1 𝑜 A
5 4 adantr A V ¬ A A 1 𝑜 A
6 simpr A V ¬ A A ¬ A A
7 disjsn A A = ¬ A A
8 6 7 sylibr A V ¬ A A A A =
9 djuenun A A 1 𝑜 A A A = A ⊔︀ 1 𝑜 A A
10 2 5 8 9 syl3anc A V ¬ A A A ⊔︀ 1 𝑜 A A
11 df-suc suc A = A A
12 10 11 breqtrrdi A V ¬ A A A ⊔︀ 1 𝑜 suc A