Metamath Proof Explorer


Theorem dju1p1e2ALT

Description: Alternate proof of dju1p1e2 . (Contributed by Mario Carneiro, 29-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dju1p1e2ALT 1 𝑜 ⊔︀ 1 𝑜 2 𝑜

Proof

Step Hyp Ref Expression
1 1on 1 𝑜 On
2 1 onordi Ord 1 𝑜
3 ordirr Ord 1 𝑜 ¬ 1 𝑜 1 𝑜
4 2 3 ax-mp ¬ 1 𝑜 1 𝑜
5 dju1en 1 𝑜 On ¬ 1 𝑜 1 𝑜 1 𝑜 ⊔︀ 1 𝑜 suc 1 𝑜
6 1 4 5 mp2an 1 𝑜 ⊔︀ 1 𝑜 suc 1 𝑜
7 df-2o 2 𝑜 = suc 1 𝑜
8 6 7 breqtrri 1 𝑜 ⊔︀ 1 𝑜 2 𝑜