Metamath Proof Explorer


Theorem djuassen

Description: Associative law for cardinal addition. Exercise 4.56(c) of Mendelson p. 258. (Contributed by NM, 26-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion djuassen A V B W C X A ⊔︀ B ⊔︀ C A ⊔︀ B ⊔︀ C

Proof

Step Hyp Ref Expression
1 0ex V
2 simp1 A V B W C X A V
3 xpsnen2g V A V × A A
4 1 2 3 sylancr A V B W C X × A A
5 4 ensymd A V B W C X A × A
6 1oex 1 𝑜 V
7 snex V
8 simp2 A V B W C X B W
9 xpexg V B W × B V
10 7 8 9 sylancr A V B W C X × B V
11 xpsnen2g 1 𝑜 V × B V 1 𝑜 × × B × B
12 6 10 11 sylancr A V B W C X 1 𝑜 × × B × B
13 xpsnen2g V B W × B B
14 1 8 13 sylancr A V B W C X × B B
15 entr 1 𝑜 × × B × B × B B 1 𝑜 × × B B
16 12 14 15 syl2anc A V B W C X 1 𝑜 × × B B
17 16 ensymd A V B W C X B 1 𝑜 × × B
18 xp01disjl × A 1 𝑜 × × B =
19 18 a1i A V B W C X × A 1 𝑜 × × B =
20 djuenun A × A B 1 𝑜 × × B × A 1 𝑜 × × B = A ⊔︀ B × A 1 𝑜 × × B
21 5 17 19 20 syl3anc A V B W C X A ⊔︀ B × A 1 𝑜 × × B
22 snex 1 𝑜 V
23 simp3 A V B W C X C X
24 xpexg 1 𝑜 V C X 1 𝑜 × C V
25 22 23 24 sylancr A V B W C X 1 𝑜 × C V
26 xpsnen2g 1 𝑜 V 1 𝑜 × C V 1 𝑜 × 1 𝑜 × C 1 𝑜 × C
27 6 25 26 sylancr A V B W C X 1 𝑜 × 1 𝑜 × C 1 𝑜 × C
28 xpsnen2g 1 𝑜 V C X 1 𝑜 × C C
29 6 23 28 sylancr A V B W C X 1 𝑜 × C C
30 entr 1 𝑜 × 1 𝑜 × C 1 𝑜 × C 1 𝑜 × C C 1 𝑜 × 1 𝑜 × C C
31 27 29 30 syl2anc A V B W C X 1 𝑜 × 1 𝑜 × C C
32 31 ensymd A V B W C X C 1 𝑜 × 1 𝑜 × C
33 indir × A 1 𝑜 × × B 1 𝑜 × 1 𝑜 × C = × A 1 𝑜 × 1 𝑜 × C 1 𝑜 × × B 1 𝑜 × 1 𝑜 × C
34 xp01disjl × A 1 𝑜 × 1 𝑜 × C =
35 xp01disjl × B 1 𝑜 × C =
36 35 xpeq2i 1 𝑜 × × B 1 𝑜 × C = 1 𝑜 ×
37 xpindi 1 𝑜 × × B 1 𝑜 × C = 1 𝑜 × × B 1 𝑜 × 1 𝑜 × C
38 xp0 1 𝑜 × =
39 36 37 38 3eqtr3i 1 𝑜 × × B 1 𝑜 × 1 𝑜 × C =
40 34 39 uneq12i × A 1 𝑜 × 1 𝑜 × C 1 𝑜 × × B 1 𝑜 × 1 𝑜 × C =
41 un0 =
42 40 41 eqtri × A 1 𝑜 × 1 𝑜 × C 1 𝑜 × × B 1 𝑜 × 1 𝑜 × C =
43 33 42 eqtri × A 1 𝑜 × × B 1 𝑜 × 1 𝑜 × C =
44 43 a1i A V B W C X × A 1 𝑜 × × B 1 𝑜 × 1 𝑜 × C =
45 djuenun A ⊔︀ B × A 1 𝑜 × × B C 1 𝑜 × 1 𝑜 × C × A 1 𝑜 × × B 1 𝑜 × 1 𝑜 × C = A ⊔︀ B ⊔︀ C × A 1 𝑜 × × B 1 𝑜 × 1 𝑜 × C
46 21 32 44 45 syl3anc A V B W C X A ⊔︀ B ⊔︀ C × A 1 𝑜 × × B 1 𝑜 × 1 𝑜 × C
47 df-dju B ⊔︀ C = × B 1 𝑜 × C
48 47 xpeq2i 1 𝑜 × B ⊔︀ C = 1 𝑜 × × B 1 𝑜 × C
49 xpundi 1 𝑜 × × B 1 𝑜 × C = 1 𝑜 × × B 1 𝑜 × 1 𝑜 × C
50 48 49 eqtri 1 𝑜 × B ⊔︀ C = 1 𝑜 × × B 1 𝑜 × 1 𝑜 × C
51 50 uneq2i × A 1 𝑜 × B ⊔︀ C = × A 1 𝑜 × × B 1 𝑜 × 1 𝑜 × C
52 df-dju A ⊔︀ B ⊔︀ C = × A 1 𝑜 × B ⊔︀ C
53 unass × A 1 𝑜 × × B 1 𝑜 × 1 𝑜 × C = × A 1 𝑜 × × B 1 𝑜 × 1 𝑜 × C
54 51 52 53 3eqtr4i A ⊔︀ B ⊔︀ C = × A 1 𝑜 × × B 1 𝑜 × 1 𝑜 × C
55 46 54 breqtrrdi A V B W C X A ⊔︀ B ⊔︀ C A ⊔︀ B ⊔︀ C