Metamath Proof Explorer


Theorem djucomen

Description: Commutative law for cardinal addition. Exercise 4.56(c) of Mendelson p. 258. (Contributed by NM, 24-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion djucomen A V B W A ⊔︀ B B ⊔︀ A

Proof

Step Hyp Ref Expression
1 1oex 1 𝑜 V
2 xpsnen2g 1 𝑜 V A V 1 𝑜 × A A
3 1 2 mpan A V 1 𝑜 × A A
4 0ex V
5 xpsnen2g V B W × B B
6 4 5 mpan B W × B B
7 ensym 1 𝑜 × A A A 1 𝑜 × A
8 ensym × B B B × B
9 incom 1 𝑜 × A × B = × B 1 𝑜 × A
10 xp01disjl × B 1 𝑜 × A =
11 9 10 eqtri 1 𝑜 × A × B =
12 djuenun A 1 𝑜 × A B × B 1 𝑜 × A × B = A ⊔︀ B 1 𝑜 × A × B
13 11 12 mp3an3 A 1 𝑜 × A B × B A ⊔︀ B 1 𝑜 × A × B
14 7 8 13 syl2an 1 𝑜 × A A × B B A ⊔︀ B 1 𝑜 × A × B
15 3 6 14 syl2an A V B W A ⊔︀ B 1 𝑜 × A × B
16 df-dju B ⊔︀ A = × B 1 𝑜 × A
17 16 equncomi B ⊔︀ A = 1 𝑜 × A × B
18 15 17 breqtrrdi A V B W A ⊔︀ B B ⊔︀ A