Metamath Proof Explorer


Theorem djudisj

Description: Disjoint unions with disjoint index sets are disjoint. (Contributed by Stefan O'Rear, 21-Nov-2014)

Ref Expression
Assertion djudisj A B = x A x × C y B y × D =

Proof

Step Hyp Ref Expression
1 djussxp x A x × C A × V
2 incom A × V y B y × D = y B y × D A × V
3 djussxp y B y × D B × V
4 incom B × V A × V = A × V B × V
5 xpdisj1 A B = A × V B × V =
6 4 5 eqtrid A B = B × V A × V =
7 ssdisj y B y × D B × V B × V A × V = y B y × D A × V =
8 3 6 7 sylancr A B = y B y × D A × V =
9 2 8 eqtrid A B = A × V y B y × D =
10 ssdisj x A x × C A × V A × V y B y × D = x A x × C y B y × D =
11 1 9 10 sylancr A B = x A x × C y B y × D =