Metamath Proof Explorer


Theorem djudom1

Description: Ordering law for cardinal addition. Exercise 4.56(f) of Mendelson p. 258. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015) (Revised by Jim Kingdon, 1-Sep-2023)

Ref Expression
Assertion djudom1 A B C V A ⊔︀ C B ⊔︀ C

Proof

Step Hyp Ref Expression
1 snex V
2 1 xpdom2 A B × A × B
3 snex 1 𝑜 V
4 xpexg 1 𝑜 V C V 1 𝑜 × C V
5 3 4 mpan C V 1 𝑜 × C V
6 domrefg 1 𝑜 × C V 1 𝑜 × C 1 𝑜 × C
7 5 6 syl C V 1 𝑜 × C 1 𝑜 × C
8 xp01disjl × B 1 𝑜 × C =
9 undom × A × B 1 𝑜 × C 1 𝑜 × C × B 1 𝑜 × C = × A 1 𝑜 × C × B 1 𝑜 × C
10 8 9 mpan2 × A × B 1 𝑜 × C 1 𝑜 × C × A 1 𝑜 × C × B 1 𝑜 × C
11 2 7 10 syl2an A B C V × A 1 𝑜 × C × B 1 𝑜 × C
12 df-dju A ⊔︀ C = × A 1 𝑜 × C
13 df-dju B ⊔︀ C = × B 1 𝑜 × C
14 11 12 13 3brtr4g A B C V A ⊔︀ C B ⊔︀ C