Metamath Proof Explorer


Theorem djudom2

Description: Ordering law for cardinal addition. Theorem 6L(a) of Enderton p. 149. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion djudom2 A B C V C ⊔︀ A C ⊔︀ B

Proof

Step Hyp Ref Expression
1 djudom1 A B C V A ⊔︀ C B ⊔︀ C
2 reldom Rel
3 2 brrelex1i A B A V
4 djucomen A V C V A ⊔︀ C C ⊔︀ A
5 3 4 sylan A B C V A ⊔︀ C C ⊔︀ A
6 2 brrelex2i A B B V
7 djucomen B V C V B ⊔︀ C C ⊔︀ B
8 6 7 sylan A B C V B ⊔︀ C C ⊔︀ B
9 domen1 A ⊔︀ C C ⊔︀ A A ⊔︀ C B ⊔︀ C C ⊔︀ A B ⊔︀ C
10 domen2 B ⊔︀ C C ⊔︀ B C ⊔︀ A B ⊔︀ C C ⊔︀ A C ⊔︀ B
11 9 10 sylan9bb A ⊔︀ C C ⊔︀ A B ⊔︀ C C ⊔︀ B A ⊔︀ C B ⊔︀ C C ⊔︀ A C ⊔︀ B
12 5 8 11 syl2anc A B C V A ⊔︀ C B ⊔︀ C C ⊔︀ A C ⊔︀ B
13 1 12 mpbid A B C V C ⊔︀ A C ⊔︀ B