Metamath Proof Explorer


Theorem djudoml

Description: A set is dominated by its disjoint union with another. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion djudoml A V B W A A ⊔︀ B

Proof

Step Hyp Ref Expression
1 unexg A V B W A B V
2 ssun1 A A B
3 ssdomg A B V A A B A A B
4 1 2 3 mpisyl A V B W A A B
5 undjudom A V B W A B A ⊔︀ B
6 domtr A A B A B A ⊔︀ B A A ⊔︀ B
7 4 5 6 syl2anc A V B W A A ⊔︀ B